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Abstract
It has been conjectured that for ε � 0 the entire spectrum of the non-Hermitian
PT -symmetric Hamiltonian HN = p2 + x2(ix)ε , where N = 2 + ε, is real.
Strong evidence for this conjecture for the special case N = 3 was provided
in a recent paper by Mezincescu (Mezincescu G A 2000 J. Phys. A: Math.
Gen. 33 4911) in which the spectral zeta function Z3(1) for the Hamiltonian
H3 = p2 + ix3 was calculated exactly. Here, the calculation of Mezincescu is
generalized from the special caseN = 3 to the region of allN � 2 (ε � 0) and
the exact spectral zeta function ZN(1) for HN is obtained. Using ZN(1) it is
shown that to extremely high precision (about three parts in 1018) the spectrum
of HN for other values of N such as N = 4 is entirely real.

PACS numbers: 0210, 0220, 0230, 0240

1. Introduction

There is strong numerical evidence that the class of non-Hermitian PT -symmetric
Hamiltonians defined by

HN = p2 + x2(ix)ε (N = 2 + ε, ε � 0) (1.1)

possesses a spectrum that is entirely discrete, real, and positive [1, 2]. It is believed that the
reality and positivity of the spectrum is a consequence of PT symmetry. Hamiltonians such
as those in (1.1) are interesting because the Schrödinger eigenvalue problem associated with
HN may be regarded as a deformation of a Sturm–Liouville problem into the complex plane.

In a recent paper [3], Mezincescu calculated the spectral zeta function Z3(1), the sum of
the inverses of the energy eigenvalues of the Hamiltonian H3 in (1.1) for the case N = 3:

Z3(1) =
∞∑
n=0

1
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= 
2

(
1
5

)
56/5
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3 − 2 cos

π

5

)
. (1.2)

Using the numerical values of the first few eigenvalues and the WKB formula for the high
eigenvalues [1], Mezincescu concluded that to about an accuracy of two parts in 106 there are
no other eigenvalues in the spectrum other than the real ones found by Bender et al.
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In this Comment we point out that the method used by Mezincescu immediately generalizes
to all HamiltoniansHN in the class in (1.1). The result for allN > 2 is given by the following
elegant and compact formula:

ZN(1) = 4 sin2 (
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This equation reduces to that in (1.2) for the special case N = 3. Note that ZN(1) is singular
atN = 2 (ε = 0) because for the harmonic oscillator the energy eigenvalues En grow linearly
with n.

We have obtained an even more general formula for the two-parameter class of
Hamiltonians [2]

H2K,ε = p2 + x2K(ix)ε (K = 1, 2, 3, . . . , ε � 0). (1.4)

In terms of the variable N = 2K + ε we have
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This formula reduces to that in (1.3) when K = 1.

2. Comparison with numerical and analytic data

We have examined (1.3) for several values of N . We present two cases below:

Case 1. Large-ε limit of the x2(ix)ε potential. The large-ε limit of a x2(ix)ε potential is
exactly solvable in terms of Bessel functions [4]. For largeN = 2+ε the asymptotic behaviour
of the nth energy level is given by

En ∼ 1
16 (2n + 1)2N2 (N → ∞). (2.1)

Thus, if we calculate the spectral zeta function Z∞(1), we obtain

Z∞(1) ∼ 16

N2

∞∑
n=0

1

(2n + 1)2
(N → ∞)

∼ 16

N2

π2

8
(N → ∞)

∼ 2π2

N2
(N → ∞). (2.2)

We can verify this result by examining the large-N behaviour of ZN(1) in (1.3). The result is
precisely that in (2.2).

Case 2. The −x4 potential (N = 4). From (1.3), the exact value of ZN(1) at N = 4 is

Zexact
4 (1) = 1.526 605 869 546 945 566 99. (2.3)

We can test this result using the numerically calculated energy levels of the Hamilto-
nian H4 = p2 − x4, the first 11 of which are Enumerical

0 = 1.477 149 753 577 995,
Enumerical

1 = 6.003 386 083 308 277, Enumerical
2 = 11.802 433 595 134 78, Enumerical

3 =
18.458 818 704 077 12,Enumerical

4 = 25.791 792 378 517 22,Enumerical
5 = 33.694 279 876 607 79,
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Enumerical
6 = 42.093 807 710 826 17, Enumerical

7 = 50.937 404 324 545 14, Enumerical
8 =

60.184 331 266 082 70,Enumerical
9 = 69.802 096 674 912 04,Enumerical

10 = 79.764 065 824 381 80.
The remaining energy levels are taken from the second-order WKB calculation [5]
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= 1.524 768 398 149. (2.6)

We then obtain our numerical approximation to Z4(1) by calculating

Znumerical
4 (1) =

10∑
n=0

1

Enumerical
n
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1
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1
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= 1.526 605 869 911. (2.7)

The difference between Znumerical
4 (1) in (2.7) and Zexact

4 (1) in (2.3) is 3.64 × 10−10. Thus,
the relative error is 2.38 × 10−8%. This extremely small number provides what we believe is
convincing evidence supporting the conjecture that the entire spectrum of H4 is real and that
there are no complex eigenvalues.

We can extend this calculation beyond second order. Using fourth-order WKB the relative
error decreases to 1.6 × 10−10%; in sixth-order WKB the relative error further decreases to
1.0 × 10−12%; in eighth-order WKB the relative error is 9.8 × 10−15%; in tenth-order WKB
the relative error decreases to 2.6 × 10−16%. Thus, it would be astonishing indeed if there
were any complex eigenvalues.

3. Final remarks

It is interesting to compare the spectral zeta function (1.3) for the HamiltonianHN in (1.1) with
the spectral zeta function for the conventional Hermitian quantum mechanical Hamiltonian [6]

HN = p2 + |x|N. (3.1)

Using the same methods that give (1.3) (see [7]), we obtain for the Hamiltonian HN in (3.1)
the exact result
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It is easy to check this result. For example, if we let N → ∞, the potential |x|N becomes a
square well, whose energy levels are En = 1

4n
2π2. The exact spectral zeta function for this

potential is Z∞(1) = 2
3 .
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What is most remarkable is the striking similarity between the spectral zeta functions (1.3)
and (3.2) for the non-Hermitian and Hermitian Hamiltonians in (1.1) and (3.1). Indeed, the
only structural difference is in the trigonometric functions.

Furthermore, the results of this paper suggest that the eigenfunctionsψn(x) of the complex
HamiltonianHN are complete. To explain this assertion, we review the calculational technique
that gives the spectral zeta function. The Green function G(x, y) has the representation

G(x, y) =
∞∑
n=0

ψn(x)ψn(y)

En
. (3.3)

This Green function satisfies the differential equation

HG(x, y) = δ(x − y) (3.4)

where

δ(x − y) =
∞∑
n=0

ψn(x)ψn(y) (3.5)

is the usual statement of completeness. The correctness of our calculation of the spectral zeta
function in terms of G(x, x),

ZN(1) =
∞∑
n=0

1

En
=

∫
dx G(x, x) (3.6)

implicitly relies on the assumption of completeness. In an earlier paper [8] a numerical study
of the zeros of the eigenfunctions was presented to argue that the eigenfunctions are complete.
The current paper strengthens this assertion enormously.
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