Comment on a recent paper by Mezincescu

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 343325
(http://iopscience.iop.org/0305-4470/34/15/401)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.95
The article was downloaded on 02/06/2010 at 08:56

Please note that terms and conditions apply.

COMMENT

Comment on a recent paper by Mezincescu

Carl M Bender and Qinghai Wang
Department of Physics, Washington University, St Louis, MO 63130, USA
E-mail: cmb@howdy.wustl.edu and qwang@hbar.wustl.edu

Received 10 October 2000

Abstract

It has been conjectured that for $\epsilon \geqslant 0$ the entire spectrum of the non-Hermitian $\mathcal{P} \mathcal{T}$-symmetric Hamiltonian $H_{N}=p^{2}+x^{2}(\mathrm{i} x)^{\epsilon}$, where $N=2+\epsilon$, is real. Strong evidence for this conjecture for the special case $N=3$ was provided in a recent paper by Mezincescu (Mezincescu G A 2000 J. Phys. A: Math. Gen. 33 4911) in which the spectral zeta function $Z_{3}(1)$ for the Hamiltonian $H_{3}=p^{2}+\mathrm{i} x^{3}$ was calculated exactly. Here, the calculation of Mezincescu is generalized from the special case $N=3$ to the region of all $N \geqslant 2(\epsilon \geqslant 0)$ and the exact spectral zeta function $Z_{N}(1)$ for H_{N} is obtained. Using $Z_{N}(1)$ it is shown that to extremely high precision (about three parts in 10^{18}) the spectrum of H_{N} for other values of N such as $N=4$ is entirely real.

PACS numbers: $0210,0220,0230,0240$

1. Introduction

There is strong numerical evidence that the class of non-Hermitian $\mathcal{P} T$-symmetric Hamiltonians defined by

$$
\begin{equation*}
H_{N}=p^{2}+x^{2}(\mathrm{i} x)^{\epsilon} \quad(N=2+\epsilon, \epsilon \geqslant 0) \tag{1.1}
\end{equation*}
$$

possesses a spectrum that is entirely discrete, real, and positive [1,2]. It is believed that the reality and positivity of the spectrum is a consequence of $\mathcal{P} T$ symmetry. Hamiltonians such as those in (1.1) are interesting because the Schrödinger eigenvalue problem associated with H_{N} may be regarded as a deformation of a Sturm-Liouville problem into the complex plane.

In a recent paper [3], Mezincescu calculated the spectral zeta function $Z_{3}(1)$, the sum of the inverses of the energy eigenvalues of the Hamiltonian H_{3} in (1.1) for the case $N=3$:

$$
\begin{equation*}
Z_{3}(1)=\sum_{n=0}^{\infty} \frac{1}{E_{n}}=\frac{\Gamma^{2}\left(\frac{1}{5}\right)}{5^{6 / 5} \Gamma^{2}\left(\frac{3}{5}\right)}\left(3-2 \cos \frac{\pi}{5}\right) . \tag{1.2}
\end{equation*}
$$

Using the numerical values of the first few eigenvalues and the WKB formula for the high eigenvalues [1], Mezincescu concluded that to about an accuracy of two parts in 10^{6} there are no other eigenvalues in the spectrum other than the real ones found by Bender et al.

In this Comment we point out that the method used by Mezincescu immediately generalizes to all Hamiltonians H_{N} in the class in (1.1). The result for all $N>2$ is given by the following elegant and compact formula:

$$
\begin{equation*}
Z_{N}(1)=\frac{4 \sin ^{2}\left(\frac{\pi}{N+2}\right) \Gamma\left(\frac{1}{N+2}\right) \Gamma\left(\frac{2}{N+2}\right) \Gamma\left(\frac{N-2}{N+2}\right)}{(N+2)} . \tag{1.3}
\end{equation*}
$$

This equation reduces to that in (1.2) for the special case $N=3$. Note that $Z_{N}(1)$ is singular at $N=2(\epsilon=0)$ because for the harmonic oscillator the energy eigenvalues E_{n} grow linearly with n.

We have obtained an even more general formula for the two-parameter class of Hamiltonians [2]

$$
\begin{equation*}
H_{2 K, \epsilon}=p^{2}+x^{2 K}(\mathrm{i} x)^{\epsilon} \quad(K=1,2,3, \ldots, \epsilon \geqslant 0) . \tag{1.4}
\end{equation*}
$$

In terms of the variable $N=2 K+\epsilon$ we have

$$
\begin{equation*}
Z_{2 K, \epsilon}(1)=\left[1+\frac{\cos \left(\frac{3 \epsilon \pi}{2 N+4}\right) \sin \left(\frac{\pi}{N+2}\right)}{\cos \left(\frac{\epsilon \pi}{2 N+4}\right) \sin \left(\frac{3 \pi}{N+2}\right)}\right] \frac{\Gamma\left(\frac{1}{N+2}\right) \Gamma\left(\frac{2}{N+2}\right) \Gamma\left(\frac{N-2}{N+2}\right)}{(N+2)^{\frac{2 N}{N+2}} \Gamma\left(\frac{N-1}{N+2}\right) \Gamma\left(\frac{N}{N+2}\right)} \tag{1.5}
\end{equation*}
$$

This formula reduces to that in (1.3) when $K=1$.

2. Comparison with numerical and analytic data

We have examined (1.3) for several values of N. We present two cases below:

Case 1. Large- ϵ limit of the $x^{2}(\mathrm{i} x)^{\epsilon}$ potential. The large- ϵ limit of a $x^{2}(\mathrm{i} x)^{\epsilon}$ potential is exactly solvable in terms of Bessel functions [4]. For large $N=2+\epsilon$ the asymptotic behaviour of the nth energy level is given by

$$
\begin{equation*}
E_{n} \sim \frac{1}{16}(2 n+1)^{2} N^{2} \quad(N \rightarrow \infty) \tag{2.1}
\end{equation*}
$$

Thus, if we calculate the spectral zeta function $Z_{\infty}(1)$, we obtain

$$
\begin{align*}
Z_{\infty}(1) & \sim \frac{16}{N^{2}} \sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}} & & (N \rightarrow \infty) \\
& \sim \frac{16}{N^{2}} \frac{\pi^{2}}{8} & & (N \rightarrow \infty) \\
& \sim \frac{2 \pi^{2}}{N^{2}} & & (N \rightarrow \infty) \tag{2.2}
\end{align*}
$$

We can verify this result by examining the large- N behaviour of $Z_{N}(1)$ in (1.3). The result is precisely that in (2.2).

Case 2. The $-x^{4}$ potential $(N=4)$. From (1.3), the exact value of $Z_{N}(1)$ at $N=4$ is

$$
\begin{equation*}
Z_{4}^{\text {exact }}(1)=1.52660586954694556699 \tag{2.3}
\end{equation*}
$$

We can test this result using the numerically calculated energy levels of the Hamiltonian $H_{4}=p^{2}-x^{4}$, the first 11 of which are $E_{0}^{\text {numerical }}=1.477149753577995$, $E_{1}^{\text {numerical }}=6.003386083308277, E_{2}^{\text {numerical }}=11.80243359513478, E_{3}^{\text {numerical }}=$ $18.45881870407712, E_{4}^{\text {numerical }}=25.79179237851722, E_{5}^{\text {numerical }}=33.69427987660779$,
$E_{6}^{\text {numerical }}=42.09380771082617, E_{7}^{\text {numerical }}=50.93740432454514, E_{8}^{\text {numerical }}=$ $60.18433126608270, E_{9}^{\text {numerical }}=69.80209667491204, E_{10}^{\text {numerical }}=79.76406582438180$.
The remaining energy levels are taken from the second-order WKB calculation [5]
$E_{n}^{\mathrm{WKB}} \sim\left[\frac{\sqrt{18 \pi} \Gamma\left(\frac{3}{4}\right)\left(n+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{4}\right)}\right]^{4 / 3}\left[1+\frac{1}{18 \pi\left(n+\frac{1}{2}\right)^{2}}\right] \quad(n \rightarrow \infty)$.
Thus,
$\frac{1}{E_{n}^{\mathrm{WKB}}} \sim\left[\frac{\Gamma\left(\frac{1}{4}\right)}{\sqrt{18 \pi} \Gamma\left(\frac{3}{4}\right)}\right]^{4 / 3}\left[\frac{1}{\left(n+\frac{1}{2}\right)^{4 / 3}}-\frac{1}{18 \pi\left(n+\frac{1}{2}\right)^{10 / 3}}\right] \quad(n \rightarrow \infty)$
and

$$
\begin{align*}
\sum_{n=0}^{\infty} \frac{1}{E_{n}^{\mathrm{WKB}}} & =\left[\frac{\Gamma\left(\frac{1}{4}\right)}{\sqrt{18 \pi} \Gamma\left(\frac{3}{4}\right)}\right]^{4 / 3}\left[\left(2^{4 / 3}-1\right) \zeta\left(\frac{4}{3}\right)-\frac{2^{10 / 3}-1}{18 \pi} \zeta\left(\frac{10}{3}\right)\right] \\
& =1.524768398149 \tag{2.6}
\end{align*}
$$

We then obtain our numerical approximation to $Z_{4}(1)$ by calculating

$$
\begin{align*}
Z_{4}^{\text {numerical }}(1) & =\sum_{n=0}^{10} \frac{1}{E_{n}^{\text {numerical }}}+\sum_{n=0}^{\infty} \frac{1}{E_{n}^{\mathrm{WKB}}}-\sum_{n=0}^{10} \frac{1}{E_{n}^{\mathrm{WKB}}} \\
& =1.526605869911 . \tag{2.7}
\end{align*}
$$

The difference between $Z_{4}^{\text {numerical }}(1)$ in (2.7) and $Z_{4}^{\text {exact }}(1)$ in (2.3) is 3.64×10^{-10}. Thus, the relative error is $2.38 \times 10^{-8} \%$. This extremely small number provides what we believe is convincing evidence supporting the conjecture that the entire spectrum of H_{4} is real and that there are no complex eigenvalues.

We can extend this calculation beyond second order. Using fourth-order WKB the relative error decreases to $1.6 \times 10^{-10} \%$; in sixth-order WKB the relative error further decreases to $1.0 \times 10^{-12} \%$; in eighth-order WKB the relative error is $9.8 \times 10^{-15} \%$; in tenth-order WKB the relative error decreases to $2.6 \times 10^{-16} \%$. Thus, it would be astonishing indeed if there were any complex eigenvalues.

3. Final remarks

It is interesting to compare the spectral zeta function (1.3) for the Hamiltonian H_{N} in (1.1) with the spectral zeta function for the conventional Hermitian quantum mechanical Hamiltonian [6]

$$
\begin{equation*}
H_{N}=p^{2}+|x|^{N} . \tag{3.1}
\end{equation*}
$$

Using the same methods that give (1.3) (see [7]), we obtain for the Hamiltonian H_{N} in (3.1) the exact result

$$
\begin{equation*}
Z_{N}(1)=\frac{4 \sin \left(\frac{\pi}{N+2}\right) \cos ^{2}\left(\frac{\pi}{N+2}\right) \Gamma\left(\frac{1}{N+2}\right) \Gamma\left(\frac{2}{N+2}\right) \Gamma\left(\frac{N-2}{N+2}\right)}{\sin \left(\frac{3 \pi}{N+2}\right)(N+2)^{\frac{2 N}{N+2}} \Gamma\left(\frac{N-1}{N+2}\right) \Gamma\left(\frac{N}{N+2}\right)} . \tag{3.2}
\end{equation*}
$$

It is easy to check this result. For example, if we let $N \rightarrow \infty$, the potential $|x|^{N}$ becomes a square well, whose energy levels are $E_{n}=\frac{1}{4} n^{2} \pi^{2}$. The exact spectral zeta function for this potential is $Z_{\infty}(1)=\frac{2}{3}$.

What is most remarkable is the striking similarity between the spectral zeta functions (1.3) and (3.2) for the non-Hermitian and Hermitian Hamiltonians in (1.1) and (3.1). Indeed, the only structural difference is in the trigonometric functions.

Furthermore, the results of this paper suggest that the eigenfunctions $\psi_{n}(x)$ of the complex Hamiltonian H_{N} are complete. To explain this assertion, we review the calculational technique that gives the spectral zeta function. The Green function $G(x, y)$ has the representation

$$
\begin{equation*}
G(x, y)=\sum_{n=0}^{\infty} \frac{\psi_{n}(x) \psi_{n}(y)}{E_{n}} \tag{3.3}
\end{equation*}
$$

This Green function satisfies the differential equation

$$
\begin{equation*}
H G(x, y)=\delta(x-y) \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta(x-y)=\sum_{n=0}^{\infty} \psi_{n}(x) \psi_{n}(y) \tag{3.5}
\end{equation*}
$$

is the usual statement of completeness. The correctness of our calculation of the spectral zeta function in terms of $G(x, x)$,

$$
\begin{equation*}
Z_{N}(1)=\sum_{n=0}^{\infty} \frac{1}{E_{n}}=\int \mathrm{d} x G(x, x) \tag{3.6}
\end{equation*}
$$

implicitly relies on the assumption of completeness. In an earlier paper [8] a numerical study of the zeros of the eigenfunctions was presented to argue that the eigenfunctions are complete. The current paper strengthens this assertion enormously.

Acknowledgments

We wish to thank S Boettcher for providing us with extremely accurate numerical computations of eigenvalues. We also thank the US Department of Energy for financial support.

References

[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 805243
[2] Bender C M, Boettcher S and Meisinger P N 1999 J. Math. Phys. 40 2201, see also references therein
[3] Mezincescu G A 2000 J. Phys. A: Math. Gen. 33 4911, see also references therein
[4] Bender C M, Boettcher S, Jones H F and Savage V M 1999 J. Phys. A: Math. Gen. 32 1-11
[5] Bender C M and Orszag S A 1978 Advanced Mathematical Methods for Scientists and Engineers (New York: McGraw-Hill) ch 6
[6] Boettcher S and Bender C M 1990 J. Math. Phys. 312579
[7] See, for example, Parisi G and Voros A 1982 The Riemann Problem (Lecture Notes in Mathematics 925) ed D Chudnovsky and G Chudnovsky (Berlin: Springer) Voros A 2000 J. Phys. A: Math. Gen. 337423
[8] Bender C M, Boettcher S and Savage V M 2000 J. Math. Phys. 416381

